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ABSTRACT

Landsat operational land imager (OLI) data and consequent laboratory measurements were used
to predict water clarity for an inland lake within the East Kolkata Wetland, India (a Ramsar site).
Total suspended sediment (TSS) and turbidity was considered as responsible parameters for
assessment of lake clarity. The most suitable band ratio was identified by performing Pearson
correlation analysis between water clarity concentrations and possible OLI band and band ratios
from the ‘study points’. The OLI 4 band (636-673 nm) showed the best ‘r’ value, 0.96 and 0.89 in case
of TSS and turbidity respectively. The two separate prediction models (using non-transformed and
logarithmically transformed water clarity data) was developed by applying regression analysis
between the band reflectance value of OLI4 and water clarity concentrations of the study points.
The band reflectance value of the ‘validation points’ was given as input in the prediction model and
model predicted dataset was considered as predicted water clarity parameters. The model predicted
dataset exhibit lower standard error of estimates (SEE) with contemporaneous in situ
measurements. The validation of the multi-temporal competence of the best models indicated that
it is feasible to apply the linear regression model using OLI 4 band to estimate water clarity
concentrations across the seasons in Nalban Lake without any in situ data. The water clarity
mapping of the lake was then developed using the predicted dataset. This empirical study showed
that Landsat 8 OLI imagery could be effectively applied for the mapping of TSS and turbidity for
inland lakes.

KEY WORDS : Water clarity, Landsat 8 OLI, Nalban Lake, Study points, Validation points,
Prediction model

INTRODUCTION

Water clarity is the measure of transparency level of
water, which depends on both colour of water and
light scattering. Water clarity has often been used as
an indicator of lake’s overall water quality as it
correlates other water quality variables (Udy et al.,
2005).  Water turbidity is an optical property of
water, which scatters and absorbs the light and

suspended sediments are responsible for most of the
scattering (Boyd, 2015). As water turbidity is mainly
the result of the presence of suspended matter,
turbidity measurement has often been used to
calculate fluvial suspended sediment concentrations
(Wass et al., 1997) and is commonly regarded as the
opposite of clarity. The total suspended solids (TSS)
concentration in water can result in high rates of
turbidity and sedimentation. Turbidity restricts light
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penetration and turbid water with high
concentrations suspended soil particles will not be
very productive of phytoplankton or other aquatic
plants (Scheffer, 1998; Gomez et al., 2004; Boyd,
2015). Suspended materials serve as a carrier and
storage agent of pesticides, absorbed phosphorus,
nitrogen and organic compounds and can be an
indicator of pollution (Jensen, 2000). Nevertheless,
turbidity and suspended sediment concentrations of
a water body is highly dynamic which influences
the species abundance, species composition and
total biomass of a lake.  Therefore, it is very
imperative to monitor and assess the concentrations
of suspended materials in lake waters, as well as
their spatial and temporal distribution and change.

The traditional method of monitoring water
quality is the manual collection of samples from the
field and consequent laboratory analysis. Although
this in situ measurement offers high accuracy
(Ritchie et al., 2003), this process is not suitable to
represent a synoptic spatio-temporal water quality
database on a regional scale within a short time
span and also not effective in terms of operational
cost, manpower etc. (Haddad and Harris, 1985;
Bhatti et al., 2008; Duan et al., 2013; Lim and Choi,
2015).  This problem, however, can be solved by the
integration of water quality models, in situ data and
remote sensing data, which provide spatially
distributed information in a short time span with
low operational cost (Zhou et al., 2006; Patra et al.,
2017). Since the 1970s, remote sensing techniques
have been widely used to monitor inland water
quality (Gholizadeh et al.,2016). The satellites
engaged in remote sensing are very much effective
to measure the optical properties of suspended
solids (Duane Nellis et al., 1998). The combination of
temporal coverage, spatial resolution, and data
availability makes the Landsat system particularly
useful for assessment of inland lakes (Kloiber et al.,
2002). The 15 and 30 m resolution of the Landsat 8
Operational Land Imager (OLI) combined with high
global data availability, present a unique platform to
provide the first and most up-to-date global
inventory of the world’s lakes and water quality
information retrieval at high spatial resolution and
positional accuracy using recent Landsat algorithms
(Smith et al., 2005; Sheng and Li, 2011; Li and Sheng,
2012).  Miller et al., (2013) opined that the Landsat
series provided approximately $2.19 billion
economic advantage per year that had been
expensed over several fields of research.

Remote sensing techniques are widely used to

estimate and map the turbidity and concentrations
of suspended particles, and to provide their spatial
and temporal variations. The common method
applied in previous studies involved the regression
analysis of Landsat data and roughly
contemporaneous ground observation data. Several
investigations established reliable empirical
relationships between Landsat Multispectral
Scanner (MSS), Thematic Mapper (TM), Enhanced
Thematic Mapper Plus (ETM+) data and ground
observations of suspended matter or turbidity
(Khorram et al., 1991; Cox et al., 1998; Zhou et al.,
2006; Wang et al., 2004; Papoutsa et al., 2014; Lim
and Choi, 2015) employing signal band or band
ratios.

The overall objective of this study was to develop
a method for using Landsat-8 OLI imagery data to
estimate TSS and turbidity concentrations in Nalban
Lake, East Kolkata Wetland (EKW), West Bengal,
India. The study also optimized the suitable OLI
band for forecasting water clarity and developed
optimized prediction models regionally.

Description of the study area

The Nalban Lake

The Nalban Lake is a part of the large-scale
wastewater-fed aquaculture system, the East
Kolkata Wetland (EKW) (latitude 22°25' – 22°40' N,
longitude 88°20' – 88°35' E).The EKW was
considered as “Wetland of International
Importance” under the Ramsar Convention on
August 19, 2002 due to its wise use of wetland. The
waste recycling regeion is located at the eastern part
of peri-urban Kolkata city, West Bengal, India (Fig.
1). Out of the designated 12500 ha of areas, the
wastewater-fed aquaculture impoundments cover
roughly 3900 ha and the fish production varies from
3.0 to 6.0 tonns ha-1 year-1. The Nalban Lake is rain
fed; semi-closed type and water spread area is about
126 ha. Aquaculture activities continue throughout
the year and fishes comprising carps, catfishes, and
tilapia are the major produce sold in local as well as
in distant market. This lake is now under the
administrative control of State Fisheries
Development Corporation Ltd, Government of West
Bengal.

Water sampling procedure

The in situ sampling was performed on the prefixed
date when Landsat satellite overpasses the Kolkata
city region. The water sampling procedure was
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done in two phases and was restricted to surface
water. In the first phase, eight sampling sites (S1-S8)
were selected encompassing the entire lake surface
area. These eight points were considered as ‘study
points’ (Figure 1).  A single study point was
sampled once only on the date of satellite overpass
day. It took three months to complete the sampling
process for all the eight study points.

filter and residue were dried at 102° C, and the
weight gain of the filter was caused by the
suspended solids retained on it (Boyd 1998).  The
turbidity of the sample water was estimated
following the nephelometric method by comparing
the intensity of light scattered by sample under
defined condition with the intensity of light
scattered by a standard reference suspension
(Formazin suspension) (Eaton et al., 2005) by using
a nephelometer (Systronics; Model: MK-132). The
turbidity is expressed as nephelo turbidity unit
(NTU). The TSS concentration and the turbidity of
each study points are tabulated in Table 1.  The data
obtained from these study points were considered
as primary data for establishment of the prediction
model.

In the next phase, five ‘validation points’ were
randomly selected from the lake surface (Figure 1)
(Table 2). The sampling procedures were repeated
for these five specific points on each satellite-
passing day and followed by same TSS
concentration and the turbidity estimation method.
The sampling procedures were carried on 9th March,
24th March, 25th April, 11th May and 27th May 2015.
These dataset was used for the validation of pre-
established TSS and turbidity model for the lake.
The co-ordinates of the both the study points and
validation points were geo-located with the help of
a hand held GPS recorder (Garmin eTrexÒ 10).

Lands at 8OLI Data

The cloud-free ‘Landsat 8 OLI’ satellite images have
been used in the present study. It is an Earth
observation satellite that was launched on February
11, 2013 from California, USA. This new Landsat
Misson is controlled by two organizations the
United States Geological Survey (USGS) and the
National Aeronautics and Space Administration

Fig. 1. Location map of the study area. A India, B East
Kolkata Wetland and C Nalban Lake.

Table 1. Laboratory-measured Total Suspended Solids (TSS) and turbidity concentration of the study points in Nalban
Lake

Station Sampling Date Geo-coordinates TSS (mg L-1) Turbidity (NTU)

S1 16 November 2014 22°33’43.06"N 88°25’53.92"E 260 14
S2 2 December 2014 22°33’54.02"N 88°25’58.66"E 295 15.5
S3 18 December 2014 22°34’1.29"N 88°25’24.60"E 265 13.3
S4* 03 January 2015 22°33’54.25"N 88°25’40.50"E 265 14.2
S5* 19 January 2015 22°33’55.52"N 88°25’25.01"E 275 14.5
S6 4 February2015 22°33’49.80"N 88°25’26.51"E 290 15.3
S7 20 February 2015 22°33’43.34"N 88°25’33.42"E 265 13
S8 8 March 2015 22°33’43.82"N 88°25’41.56"E 280 13.8

*These two study point data were excluded due to > 50% cloud coverage in Landsat scenes

Water samples were collected in amber bottles
and were brought immediately to the laboratory for
further analysis.  The amount of suspended solid
(TSS) in the sample water was quantified by
filtering sample through a tared glass fiber filter, the
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(NASA) by partnership basis (Irons and Loveland
2013). Landsat-8 satellite carries two sensor
payloads, the Operational Land Imager (OLI) and
the Thermal Infrared Sensor (TIRS). The Landsat 8
OLI exhibits a higher resolution wavelength
coverage than the Landsat 7 ETM+ bands due to the
addition of a new coastal/aerosol band (0.43–0.45
m) for detecting suspended solids and a new cirrus
band (1.36–1.39 m) for detecting clouds (Roy et al.,
2014).  Addition of new costal/aerosol band (0.43–
0.45 m) for detecting suspended solids and new
cirrus band (1.36–1.39 m) for retrieving clouds has
increased the resolution and make it more efficient
than the ETM+(Roy et al., 2014). The satellite images
used in this study were downloaded from the
archive of USGS Landsat images (http://
earthexplorer.usgs.gov/). This study utilized visible
bands (blue, green, and red) and a near-infrared
(NIR) band to determine correlations between water

clarity and spectral reflectance values. All image
data from the Landsat 8 OLI were in GeoTIFF
format provided by the US Geological Survey Earth
Explorer. The details of Landsat bands used for
model development were presented in Table 3.
Scenes greater than 50% cloud coverage was
excluded from model development. For the
validation of the model, three Landsat scenes, 24th

March, 25th April and 27th May 2015 were used.

MATERIALS AND METHODS

Processing of satellite data

DN value extraction and conversion to TOA
reflectance data

The digital number (DN) value was extracted from
the satellite images for the coordinates of study
points and validation points respectively with the

Table 2. Pearson correlation coefficient (r) between Total Suspended Solids (TSS) concentration and various Landsat OLI
bands and band ratios of the study points

Band Ratio Correlation Band Ratio Correlation
coefficient (r) coefficient(r)

B2 0.85 (B3+B5)/2 0.94
B3 0.92 (B2+B5)/2 0.89
B4 0.96 (B4+B3)/2 0.95
B5 0.89 (B4+B2)/2 0.91

B5/B2 -0.36 (B3+B2)/2 0.89
B5/B3 -0.5 (B2+B3+B4)/3 0.92
B5/B4 -0.11 (B2+B3+B5)/3 0.91
B4/B3 -0.5 (B3+B4+B5)/3 0.95
B4/B2 -0.35 (B2+B4+B5)/3 0.91
B3/B2 -0.24 (B2+B3+B4+B5)/4 0.92

(B4+B5)/2 0.93

The bold indicates highest correlation

Table 3. Pearson correlation coefficient (r) between turbidity concentration and various Landsat OLI bands and band
ratios of the study points

Band Ratio Correlation coefficient (r) Band Ratio Correlation coefficient(r)

B2 0.85 (B3+B5)/2 0.87
B3 0.81 (B2+B5)/2 0.87
B4 0.89 (B4+B3)/2 0.88
B5 0.86 (B4+B2)/2 0.84

B5/B2 -0.5 (B3+B2)/2 0.86
B5/B3 -0.42 (B2+B3+B4)/3 0.86
B5/B4 0.06 (B2+B3+B5)/3 0.86
B4/B3 -0.5 (B3+B4+B5)/3 0.88
B4/B2 -0.5 (B2+B4+B5)/3 0.88
B3/B2 -0.5 (B2+B3+B4+B5)/4 0.87

(B4+B5)/2 0.88

The bold indicates highest correlation
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help of TNT MIPS 2013 software (Version
15.0.0.533). The raw DN value was converted into
top of atmosphere (TOA) planetary reflectance (’)
using the rescaling co-efficient supplied with image
metafile. Equation 1 obtained from (http://
landsat.usgs.gov/Landsat8_Using_Product.php)
was used for the conversion process.

’=M*Qcal + Añ .. (1)

Where,
’= TOA planetary reflectance, without

correction for solar angle
M= Band specific multiplicative rescaling factor

from metadata
A= Band specific additive rescaling factor from

metadata
Qcal = Quantized and calibrated standard

product pixel value
The TOA reflectance values were further rectified

taking into account that water leaving radiance
greatly varies depending on the solar angle. The
value of local solar zenith angle and local sun
elevation angle was taken from the metadata file
provided with the Landsat data. The equation 2
obtained from (http://landsat.usgs.gov/
Landsat8_Using_Product.php) was used for sun
angle correction.

= ’/ cos( sz * /180) = ’/sin( se * /180)
.. (2)

Where,
= TOA planetary reflectance
se = Local sun elevation angle
sz = Local solar zenith angle

Atmospheric Correction

For routine monitoring of water quality parameters
from remotely sensed imagery data, suitable
atmospheric correction is very much important (Hu
et al., 2004). The different atmospherically
influenced phenomenon (e.g. scattering, absorbing
and refracting light) affects satellite images (Chavez,
1988). In this study, darkest pixel (DP) atmospheric
correction method (histogram minimum method)
was applied (Hadjimitsis et al., 2004a) and previous
studies confirmed that the DP atmospheric
correction method is the most suitable for inland
waters (Hadjimitsis, 1999; Hadjimitsis et al., 2004b).
This method assumes that any dark pixel on the
scene that possesses the lowest DN value should
have a zero reflectance. Therefore, its radiometric
DN value represents the atmospheric additive effect

(Crane, 1971; Crippen, 1987; Campbell, 2008).  In the
DP atmospheric correction method, from a dark
object, the atmosphere at visible wavelengths affects
most of the signal reaching a satellite sensor.
Therefore, the amount of upwelling path radiance in
each band can be measured from the pixel that is
considered as dark targets on the satellite image.
Since the atmospheric path radiance affects the
surface radiance of the dark target, the radiance
resulting from the corresponding pixels is
considered proportional to the atmospheric path
radiance and can used to account for the additive
effect of atmospheric scattering (Wu et al., 2005).
Therefore, the minimum DN value in the histogram
is subtracted from all pixels within the scene.

Development of regression based prediction
model

Statistical techniques like correlation and regression
have been the most commonly used approach to
derive relation between spectral data and total
suspended matter and turbidity concentration
(Zhou et al., 2006).  The Pearson correlation analysis
was performed between possible bands/band
combinations and the in situ water quality
measurement (TSS and turbidity) of the study
points to examine the relationship.  Previous studies
suggest that different band combinations (e.g. ratios,
multiplication and average) which can be used to
retrieve relationships with in-situ measurements
(Lathrop, 1992; Lavery et al., 1993; Kloiber et al.,
2002). Prediction models were then developed using
the linear regression analysis. The regression
relationship between water quality parameters and
the corresponding reflectance values of remotely
sensed imagery can be simple linear, multiple linear
or nonlinear (Lopez-Garcia and Caselles, 1987;
Lathrop and Lillesand, 1989; Lathrop, 1992; Aguirre-
Gomez, 2000), however, linear type of regression is
effective in inferring turbidity despite possible
variation in water constituents and impact of
bottom reflectance (Fraser, 1998).

Accuracy assessment of the model

To check the efficiency and prediction accuracy of
the models, the validation process was performed.
The reflectance value of the validation points at the
predictive band or band combination was given as
input in the developed model and the model
generated output values were considered as
predictive water quality. Statistical metrics like SEE
(Standard Error of Estimates) and RMSE (Root
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Mean Square Error, in log space) was used to
evaluate the efficiency of the predictive models
(IOCGC, 2006; McHugh, 2008).

The SEE is a measure of the accuracy of predicted
scores in a regression. If SEE value is small, it would
therefore expect that most of the observed values
cluster fairly closely to the regression line. It was
calculated by the following formula

.. (3)

Where, Est is the SEE, Y is an actual score, Y’ is a
predicted score, and N is the number of pairs of
scores.

The RMSE is a measure of the average
magnitude of the error. Its value ranges from 0 to .
Lower values of RMSE indicate better fit. RMSE is a
good measure of how accurately the model predicts
the response and is the most important criterion for
fit if the main purpose of the model is a prediction.
It was calculated by the following formula.

RMSE=      .. (4)

Where, xi
measured represents measured in situ water

quality data at the validation sites and xi
estimated is the

model estimated water quality and n is the number
of validation points.

Data Analysis

The satellite imagery data was processed with the
help of the TNT MIPS 2013 (Ver 15.0.0.533) software.
For establishing the model, the statistical analysis
was performed by IBM SPSS 20.0 statistical
software. The boundary map of the study area and
spatial maps were prepared through ArcGIS
software (10.2.2). The graphs and plots were
generated using statistical software Origin® version
6.1 (Origin Lab Corporation, Northampton, USA).
The entire approach and methodologies followed in
the study was adopted from authors’ previous
study on prediction of chlorophyll-a concentration
(Chl-a) and the trophic states through Landsat 8 OLI
data for same lake after some modification (Patra et
al., 2017).

RESULTS AND DISCUSSION

In situ measured TSS concentrations of the lake
varied during the entire study period and ranged
from 260 to 290 mg L-1. The highest value of TSS was
observed in study point ‘S2’ which was sampled on

December 2014 and the lowest in study point ‘S1’
sampled on  November 2014. The turbidity level in
the Lake ranged from 13 NTUto 15.5 NTU. The
highest value of turbidity was observed in study
point ‘S2’ which was sampled on December 2014
and the lowest in study point ‘S7’ sampled on
February 2015.

Development of prediction model

The Landsat visible bands ranging from blue (OLI 2)
to green (OLI 4) and near-infrared band (NIR) (OLI
5) are commonly used for lake study and applied to
obtain the relationship between the sub-surface
reflectance and the bio-physical parameters (e.g.
water transparency, Chl-a and total suspended
solids etc.) of the water (Topliss et al., 1990; Yuming
and Min, 1992; Sass et al., 2007; Doxaran et al., 2009).
Pearson correlation analysis was performed to
observe the relative strengths between TSS and
turbidity concentration and OLI bands (2-5) and
their combinations of the study points. The Pearson
correlation coefficients (r) between TSS and
turbidityconcentration and various Landsat OLI
bands and band ratios of the study points were
depicted in Table 2 and 3 respectively.  The red
band-B4 (636-673nm) demonstratedstrongest
correlation with TSS (r =0.96; p<0.05) and
turbidity(r=0.89; p<0.05). So, this band was chosen
further for model development.

Linear regression analysis was then performed
between atmospherically corrected spectral
reflectance values at red band (B4) and the in-situ
measured TSS and turbidity dataset of the study
points for the development of prediction models.
The regression analysis between TSS concentration
and spectral reflectance values at red band (B4)
demonstrated a significant relationship (R2= 0.92)
with an SEE of 4.43 mgL-1.  Likewise, the regression
analysis between turbidity value and spectral
reflectance values at red band (B4) demonstrated a
positive relationship (R2= 0.80) with the SEE of 0.50
NTU. The fitted regression line and its confidence
and prediction bands at the confidence level of 95%
are shown in Figure 2 and Figure 3. Equation 5
presented the prediction model for TSS whereas
equation 6 is considered for prediction of turbidity.

TSSC = a + b (OLI 4) + c .. (5)

Where, TSSC is the concentration of TSS (mg L-1);
OLI 4 is the atmospherically corrected band
reflectance value and a and b are the regression
coefficients, equal to 240.3 and 1228 mg L-1
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respectively.

TC = a + b (OLI 4) + c .. (6)

Where, TC is the concentration of turbidity
(NTU); OLI 4 is the atmospherically corrected band
reflectance value and a and b are the regression
coefficients, equal to 11.81 and 80.86 NTU
respectively.

Previous studies showed that single band
algorithms might be adopted where total suspended
matters increases with increasing reflectance
(Curran et al., 1987; Novo et al., 1989; Dekker et al.,
1993).  However, presence of complex substances in
water change the reflectance of the water body and
therefore cause variation in colors, and thus,
different spectral bands can be used for TSS

retrievals (Giardino et al., 2001; Wang et al., 2004;
Nechad et al., 2010; Feng et al., 2014). Several studies
have also found that the first four bands of Landsat
(blue, green, red and NIR) are well correlated with
total suspended matters (Cox et al., 1998; Dekker et
al., 2001; Dekker et al., 2002; Kloiber et al., 2002;
Brezonik et al., 2005; Sudheer et al., 2006). This result
is well consistent with several previous
investigations (Ritchie et al., 1987; Bilge et al., 1997;
Tassan, 1997; Dekker et al., 2002) which showed that
TM 3 (red band) (630 to 690 nm) can provide
valuable information when large sediment loads
occur in lake water and are specially useful for the
quantification total suspended matter in shallow
lakes. Zhou et al., (2006) also found that TM 3 (red
band) is the best predictor of total suspended matter
in Lake Taihu, China at different seasons. The red
portion  of the visible spectrum (for example
Landsat TM3; 600–700 nm) is most appropriate for
estimating concentrations of suspended matter in
inland waters as scattering from suspended
materials dominates the reflectance spectra when
compared to pure water and phytoplankton
absorption (Kirk, 1994, Mobley, 1994, Miller and
McKee, 2004; Zhou et al., 2006). However, Ritchie et
al., (1976) by in situ studies showed that the most
useful range of spectrum for the determination of
suspended particles in surface waters was between
700 and 800 nm.Lim and Choi, (2015) also correlated
suspended solid concentration with Bands OLI 2-
OLI 5 and constructed multiple regression models
of three bands.

Band composition ranged from 1 to 7 of Landsat
TM satellite image and their combinations was
generally useful to retrieve different level of
turbidity (He et al., 2008; Alparslan et al., 2009).
Generally, in case of low to moderate turbidity
values, satellite bands located at red part of the
spectrum exhibit good correlation. In consistent to
the present study, Landsat TM3 (red band) has been
successfully used to map turbidity in Guadalquivir
River (Spain) for a turbidity range 1.5-8 NTU
(Bustamante et al., 2009). Choubey, (1992) also
reported strong correlation (r = 0.88) between LISS-
I red band (620–680 nm) and turbidity ranged 15–45
NTU in the Tawa reservoir in India. Goodinet al.,
(1996) used SPOTHRV2 red band (610–680 nm)
spectrum to retrieve relatively low levels of
turbidity (3 to 15 NTU) in the Tuttel Creek reservoir
of USA. Similarly, MODIS 250-m resolution band at
645 nm was applied to map turbidity ranged
between 0.9-8.0 NTU in the Tampa Bay (USA) (Chen

Fig. 2. Fitted regression line between Total Suspended
Solids (TSS) and OLI 4 at the confidence level of
95%.

Fig. 3. Fitted regression line between turbidity and OLI 4
at the confidence level of 95%.
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et al., 2007). Petus et al., (2010) developed an
empirical predictive algorithm model for turbidity
varied from 0.5 to 70.0 NTU using MODIS-Aqua
250- m red band at the Adour River plume (Bay of
Biscay, France). A multiple linear regression analysis
using Landsat red (630–690 nm) and near infrared
(750–900 nm) bands was used by Liversedge, (2007)
to predict turbidity in a glacial lake of Alaska where
turbidity varied between 2–997 NTU. Papoutsa et
al., (2014) also found statistical correlation between
in-situ turbidity values and Landsat TM 3 (red
band) mean reflectance values, with resulting high
r-value (0.92) at Asprokremmos Reservoir, Cyprus.

We further critically assessed the algorithm
models for supplement any accuracy factors that
can produce better models with precision.
Therefore, while checking the residual output of
regression model, we observed a weak and non-
random distributionof the residuals versus fitted

value plot (Figure 4a and Figure 4b).  This pattern
suggested that an exponential function rather than
a linear type might improve the relationship
between TSS and turbidity value with OLI 4 (Zhou
et al., 2006). Thus, we logarithmically transformed
the TSS and turbidity concentrations, and employed
another linear model as described by Zhou et al.,
(2006). The plot of residual versus fitted values
(Figure 5a and Figure 5b) indicated that, subsequent
transformation, the residuals are randomly
distributed and SEE has been decreased. The fitted
regression line and its confidence and prediction
bands at the confidence level of 95% are shown in
Figure 6 and 7. The modified forms of TSS and
turbidity prediction equations are

log10TSSC = a + b (OLI 4) + c .. (7)

Where a and b are equal to 5.49 and 4.42,
respectively and SEE decreased to 0.01 mg/L.

Fig. 4. Residuals versus fitted value plot of a) Total
Suspended Solids (TSS) and b) turbidity.

Fig. 5. Residuals versus fitted value plot of
logarithmically transformed a) Total Suspended
Solids (TSS) and b) turbidity.
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log10TC = a + b (OLI 4)+ c .. (8)

Where a and b are equal to 5.65 and 2.4,
respectively and SEE decreased to 0.03 NTU.

Validation of the prediction model

We validated the temporal capability of the models
in order to get a season-consistent model that had
the ability to predict water clarity in multiple
seasons. The validation data were different from the
model building data. In this experiment, Landsat
scenes of March, 2015, April 2015 and May 2015
were used.

The reflectance value at OLI 4 band of the
validation point co-ordinates were given as input in
equations (5) to (8) and the output data were

considered as predicted dataset. The results
indicated that logarithmically transformed model
(equation 7 and 8) is the significant predictor of
water clarity. The comparison of the estimated TSS
and turbidity concentrations with in situ sample
data of validation point is shown in Figure 8 and
Figure 9. The TSS concentration and model-fitted
TSS value of the validation points revealed an SEEof
0.05 (mg L-1) with an RMSE of 0.05. In case of
turbidity, the  regression analysis between model
predicted dataset and ground survey dataset value
of the validation points generated an SEE of 0.07
(NTU) an RMSE of 2.85. Therefore, the model using
B4 band has multi-temporal utility, and can be
applied to estimate TSS and turbidity
concentrations in different seasons for Nalban Lake.

Fig. 6. Fitted regression line between logarithmically
transformed Total Suspended Solids (TSS) and
OLI 4 at the confidence level of 95%.

Fig. 7. Fitted regression line between logarithmically
transformed turbidity and OLI 4 at the confidence
level of 95%.

Fig. 8. Comparison of the OLI 4-derived Total Suspended
Solids (TSS) estimates with in situ sample data,
using equation (7) of the validation points.

Fig. 9. Comparison of the OLI 4-derived turbidity
estimates with in situ sample data, using equation
(7) of the validation points.
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The regression analysis using equation 5 and 6
yielded high SEE and RMSE value and thus not
suitable for model prediction.In consistent to the
study, Wang et al., (2016) also found a stable
predicted value of TSS concentration applying
logarithmic transformed model using red band and
NIR band of Landsat OLI. Khorram and Cheshire
(1985) found RMSE value of 0.5 NTU and 2.79 mg L-

1 respectively between model predicted and in-situ
measured values of turbidity and TSS during study
with Landsat Multispectral Scanner (MSS) data at
Neuse River Estuary, North Carolina. Keith et al.,
(2014) empirically developed a water clarity
algorithm by regressing in situ turbidity measured
from Pensacola Bay against remotely sensed
reflectance values retrieved at 646 nm (Red band)
from a HICO image (Hyperspectral Imager for the
Coastal Ocean). The model was validated in St
Andrews Bay and Choctawhatchee Bay and results
showed a strong relationship (R2 = 0.67; RMSE =
0.56 NTU) between measured and predicted values.
Lim and Choi,(2015) measured in-situ concentration
of TSS such as 7.3 mg L-1, 7.3 mg L-1 and 6.1 mg L-1

and the predictedvalueusing Landsat 8 OLI was
5.62 mg L-1, 4.58 mg L-1, 5.5 mg L-1 in River Nakdong,
Korea.

Spatial pattern of TSS and turbidity in Nalban
Lake

The TSS (equation 7) and turbidity (equation 8)
prediction model was applied to the Landsat-8 OLI
data of three consecutive month viz., March 2015,
April 2015 and May 2015. The resulting thematic
maps of TSS and turbidity concentration level of
Nalban Lake are shown in Figure 10 and Figure 11.
The dynamic maps indicated a higher concentration

(>550 mg L-1) of TSS in the middle and southeast
part of the lake. Probably the strong wind action in
the middle of the lake is the responsible for the
massive re-suspension of bottom material resulting
high TSS concentration (Zhou et al., 2006). The
concentration of suspended sediment is relatively
higher at the entire eastern region than the western
part of the lake. This is due to presence of inlet of a
sewage water cannel. In the month of April, the
higher concentration of TSS has been found in
northern part of the lake. As this portion of the lake
is shallow and regularly used as fish harvesting, the
loose sediment easily floats up in the windy days.
Another possible cause may be the anthropogenic
activities, as there is a recreational park and
settlement on that side of the lake. Nevertheless, the
eastern portion of the lake exhibit low TSS level as
this portion is relatively less disturbed area due to
less human intervention.

Fig. 11. Spatial pattern of turbidity concentration in
Nalban Lake on 2015.

Fig. 10. Spatial pattern of Total Suspended Solids (TSS)
concentration in Nalban Lake on 2015.

Generally, water turbidity is influenced by
several factors such as urban development, human
activities, agricultural runoff and recreational
activities. Besides that, the chlorophyll
concentration is also an important factor that
decides the turbidity level of the water body (Patra
et al., 2017). Western side of the lake exhibit higher
turbidity level than eastern side. Patra et al., (2017)
found higher concentration of Chl-a concentration
on March 2015 on the western side. Therefore, Chl-
a is responsible for the elevated turbidity level in the
western bank of the lake. As TSS level is high in the
mid-northern part, the turbidity level in that part is
also higher.
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CONCLUSION

This study established a procedure to estimate and
map the water clarity (TSS and turbidity)
concentrations in inland water by developing and
applying regression models to Landsat 8 OLI
imagery, taking Nalban Lake, EKW as a case study.
The method presented in this paper can be
employed to evaluate and map the spatial patterns
of suspended sediment concentrations using multi-
spectral imagery. As a good harmony between
satellite-estimated and measured values of water
clarity variables were observed, the study proved
that Landsat 8 OLI data is well suited for the study
of suspended matter and turbidity in inland lake
waters. Results summarized that the red band (B4)
is the best predictor of TSS and turbidity
concentration in the different seasons for the Nalban
Lake. The great advantage of using satellite imagery
is the capability of their multi-temporal application
covering a large area and low costs compared to
laboratory analysis for the evaluation of the water
clarity over several lakes. The present findings can
support a decision regarding water resources
management, water preservation and aquaculture
operations in that lake. As the suspended sediment
concentrations is tend to high at the Nalban Lake,
this study suggests long-term monitoring of water
quality conditions and recommends implementing
suitable management plans to sustain the
aquaculture and other activities over the lake.
Further fine tuning of raw image data from the
Landsat 8 OLI sensor through calibration and
validation and further long-term research using
remote sensing technologies will enable
improvement of results in water quality of the
Nalban Lake as well as East Kolkata Wetland, India.
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